

Oxide Dispersion Strengthening of Eurofer97 Steel for fusion

<u>Tay Sparks</u>^a, Michael Gorley^b, Thomas Connolley^c, Yiqiang Wang^b, Biao Cai^a

ular email newsletters NewScientist

News Podcasts Video Technology Space Physics Health More *

UK takes step towards world's first nuclear fusion power station

By Adam Vaughan

^aSchool of Metallurgy and Materials, University of Birmingham ^bUK Atomic Energy Authority, Culham Science Centre ^cDiamond Light Source Ltd, Harwell Science and Innovation Campus

Dr Biao Cai, <u>b.cai@bham.ac.uk</u> Dr Yiqiang Wang, <u>yiqiang.wang@ukaea.uk</u> Tay Sparks, <u>txs971@student.bham.ac.uk</u>

Outline

- Requirements of nuclear fusion materials
- Eurofer 97 as a structural material
- In-Situ XRD Tensile Testing of E97/ODS E97
- Conclusions

Introduction

- Extreme harsh environments: 10-200 dpa neutron irradiation, 300-800 °C
- ODS low activation F/M steel (e.g. ODS Eurofer 97) is a promising candidate structural support to the breeder blanket .

ODS Eurofer97 Steel

- E97: FM steels alloyed with low activation elements
- ODS E97: ODS particles (Y₂O₃) improve thermal creep of Eurofer97 steel

Li	Be											В	С	N	0	F	Ne
Na	Mg											Al	Si	Р	S	Cl	Ar
K	Ca	Sc	Ti	v	Cr	Mn	Fe	Со	Ni	Си	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Cs	Ba	Lu	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Ро	At	Rn
-	D				10										25		

Low activation material (no limit in use) Medium activation material (design dependent) Medium/high activation material (<0.1 % allowed) High activation material (not used)

	Alloying element	Eurofer	ODS Eurofer			
	Cr	8.95	8.92			
	W	1.06	1.11 0.41			
2	Mn	0.55				
	V	0.202	0.193			
	Та	0.12	0.08			
	С	0.11	0.07			
	Si	0.03	0.11			
	Мо	0.005	0.037			
	Y ₂ O ₃	-	0.3			

In-Situ XRD Tensile Testing at Diamond Light Source

- High temperature tensile testing was performed on Eurofer and ODS Eurofer 97 steels
- High energy X-ray diffraction was used to monitor the microstructure evolution

ETMT at I12 Diamond Light Source

High temperature mechanical properties

- ODS particles strengthen Eurofer97 but degrade total elongation
- Strengthening effect lessens with increased temperature

Lattice Strain Evaluation

Single crystal elastic constants (SCEC)

 SCECs are critical for modelling material tensile response

0

0

Polycrystalline moduli

• Mechanical anisotropy is accentuated at elevated temperature

Dislocation density

• Instrumental broadening, crystallite size broadening, dislocation broadening

Dislocation density evolution (4 stages)

Dislocation density evolution

- Increased temperature increases dislocation annihilation, decreases dislocation density
- ODS particles act as nucleation points for dislocations, and pin dislocation movement
 - Increased initial density
 - Increased rapid multiplication

Constitutive Flow Analysis

 Dislocation based flow modelling was used to predict yield strength at different temperatures

Constitutive Flow Analysis

- Good agreement between experimental measurements and modelling
- Large fall in YS beyond 400°C correlated to change of obstacle depinning
 - bowing to climb

Conclusions

- Single crystal elastic constants experimentally generated for Eurofer97 and ODS Eurofer97
- Polycrystalline elastic properties evaluated
- ODS particles noted as effective dislocation pins and generators
- Degradation of yield stress in ODS E97 correlated to:
 - a fall in the pinning efficiency of ODS particles above 400°C
 - the breakdown of Hall-Petch strengthening above 550°C

Acknowledgements

- Funding for this work was provided by the United Kingdom Atomic Energy Authority (UKAEA) and the University of Birmingham School of Metallurgy & Materials.
- Dr. Wang and Dr. Gorley would also like to acknowledge the RCUK Energy Programme [grant EP/T012250/1] and the UK Government Department for Business, Energy and Industrial Strategy for time and resources.
- We acknowledge Diamond Light Source for time on the I12 beamline under proposal [EE19251].